

"Solar Energy" WS 2021/2022

PV Technology:

Lecture 8: Inorganic Thin-film Solar Cells

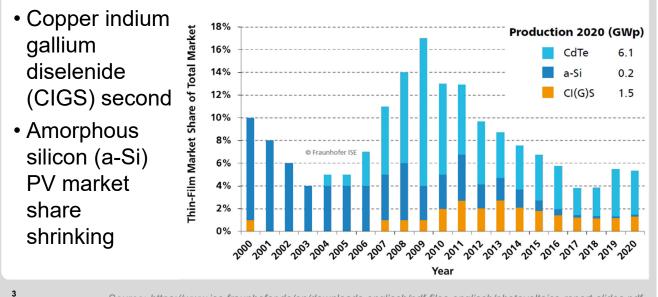
Dr. Ian A. Howard & Prof. Dr. Bryce S. Richards

Institute of Microstructure Technology (IMT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Light Technology Institute (LTI), Engesserstrasse 13, Building 30.34, 76131 Karlsruhe

www.kit.edu

Thin Film PV

Karlsruher Institut für Technologie


General motivation for thin-film PV:

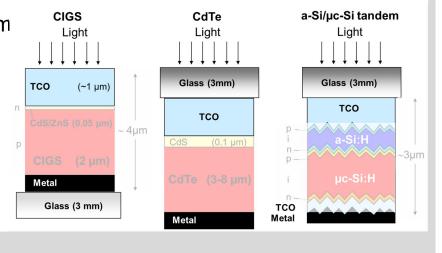
- <u>Technical</u>:
 - Significant losses during wafering process
 - Solar cells end up inside a sheet of glass anyway, so why not use the glass as a substrate to deposit onto?
 - With good light trapping \Rightarrow don't need 200 μ m of Si, 2 μ m of semiconductor enough (even with Si)
 - Potentially higher throughput
- Marketing: More uniform product appearance
- Economic:
 - Very energy-intensive process growing MG-Si, and then either Cz c-Si or mc-Si ingots
 - Thus, can possibly have a cost advantage
- 2

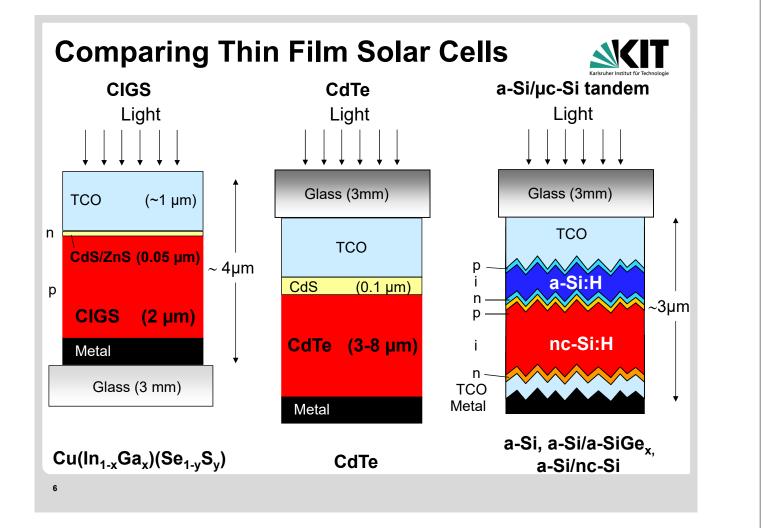
PV Market Today

- Thin-film PV represents ~5% of global annual production
- Had largest market share in 2009 ± 2 years ⇒ years when there was a Si shortage
- Cadmium telluride (CdTe) clearly has largest share

Source: https://www.ise.fraunhofer.de/en/downloads-englisch/pdf-files-englisch/photovoltaics-report-slides.pdf

Comparing Thin Film Solar Cells




What do all thin-film PV devices have in common?

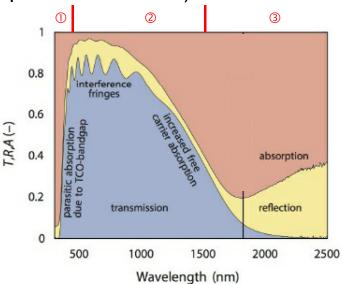
- Glass substrate (e.g. CIGS) or superstrate (e.g. CdTe, a-Si) – other materials also used, e.g. stainless steel, polymer foil
- Transparent conducting oxide (TCO) to extract current from the top-side of the device
- Thin absorber layers: 100nm – 5μm
- pn or pin junction

5

Rear metal contact

Transparent Conducting Oxides

- TCO layer has two roles:
 - i) acts as electric front contact of solar cell
 - ii) guides incident light to the active layers
- Thus, TCO needs to be both i) highly conductive and ii) highly transparent in the active wavelength range
- Typical TCO layers are made from:
 - fluorine-doped tin oxide (FTO, or SnO₂:F),
 - aluminium-doped zinc oxide (AZO, or ZnO:AI),
 - indium tin oxide (ITO) mixture ~90% indium oxide (In₂O₃) and ~10% tin oxide (SnO₂)
 - hydrogen-doped (hydrogenated) indium oxide (In₂O₃:H)
- Films are deposited using such as sputtering (AZO, ITO), or chemical vapour deposition based techniques (others)


Transparent Conducting Oxides

- Typical transmission (*T*), reflection (*R*) and absorption (*A*) spectra of ZnO:Al layer divided into three regions:
- ① at short λ, *T* is very low due to high absorption of light (energy greater than bandgap of TCO material)
- ② in this region, *T* is high ⇒ interference fringes can be used to estimate film thickness

7

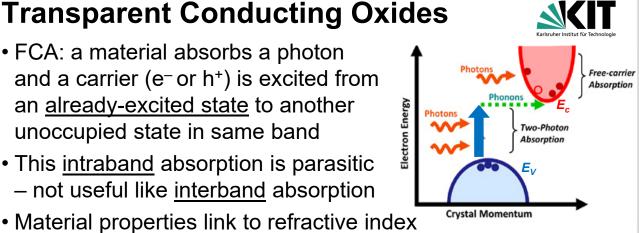
8

 ③ in the NIR region A increases again ⇒ "free carrier absorption" (FCA)

unoccupied state in same band

FCA: a material absorbs a photon

• This intraband absorption is parasitic - not useful like interband absorption


and a carrier (e⁻ or h⁺) is excited from

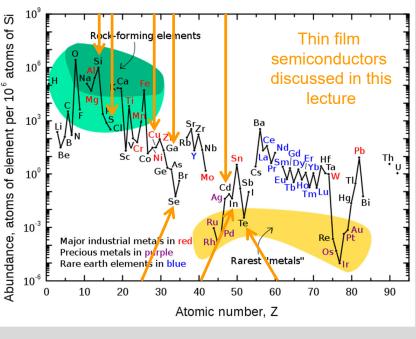
- Material properties link to refractive index n and extinction coefficient k of TCO material
- With more metallic-like properties \Rightarrow k will increase \Rightarrow material exhibits both higher reflection and absorption
- TCO should be highly transparent in active region of absorber, but electrical properties of TCO improve when free carrier density is greatest
 - \Rightarrow Trade-off between optical and electrical properties

Source: https://www.osa-opn.org/home/articles/volume 20/issue 6/features/green silicon photonics/

Transparent Conducting Oxides

- Of all commercial-scale TCOs, best performer is ITO
- However, indium is a rare element with a very low abundance of 0.05 ppm in Earth's crust (similar to silver)
- Thus, less preferable for TW-scale PV
- Motivation to use other TCO materials, e.g. abundance of elements much better in AZO and FTO: aluminium 7.96%, zinc 65 ppm, fluorine 525 ppm, tin 2.3 ppm

Materials Abundance

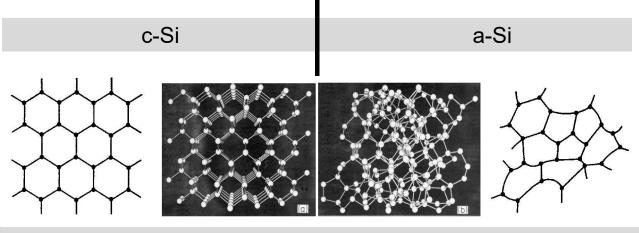

Many different semiconductors are used for thin-film solar cells

Some semiconductors require very rare elements, e.g. indium

(In), selenium (Se), or tellurium (Te)

To realise TW-scale PV, solar cells should ideally be based on abundant elements

Also, ideally elements thatare potentially toxic (e.g. Cd) should also be avoided


Source: http://en.wikipedia.org/wiki/Abundance_of_the_chemical_elements

Amorphous vs Crystalline Silicon

"Amorphous" commonly refers to <u>non-crystalline</u> materials:

- chemical bonding of atoms nearly unchanged from crystals, e.g. Si still bonded to Si
- <u>But</u> small, disorderly variations in the angles between the bonds \Rightarrow eliminates regular lattice structure

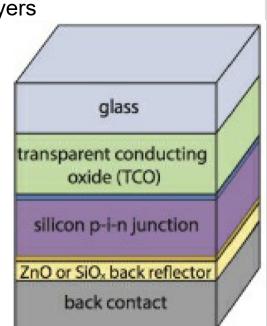
- First thin films of amorphous silicon (a-Si) layers deposited in 1965 using a silane (SiH₄) gas as precursor
- But took another 10 years to discover that a-Si actually had semiconducting properties
- Not recognized immediately that hydrogen plays very important role and that this is this actually an <u>alloy</u> of silicon and ~10% hydrogen
- Thus, electronic grade material is called hydrogenated amorphous silicon (a-Si:H)
- First successful a-Si:H solar cell with η = 2.4% was reported in 1976

13

a-Si:H Solar Cells

Back then, seemed promising technology due to:

- i) a-Si:H has a direct bandgap
 - \Rightarrow high absorption coefficient (α) in visible spectrum
 - \Rightarrow 1 μm thick a-Si:H layer can absorb 90% of above-bandgap solar energy
- ii) PECVD technique allowed for production of a-Si:H films over >1m² area and at low-T (100–250°C)
 - \Rightarrow low T enables use of low cost substrates, e.g. glass, metal or polymer foils
 - \Rightarrow also opened up possibility of flexible PV modules
- iii) Possibility of "bandgap engineering"



- Compared to c-Si, a-Si:H films have a high amount of defects (~10¹⁶/cm^{3,}, c.f. below detection limit for c-Si)
- Due to the disordered structure, not all electrons able to bond with the neighbouring Si atoms ⇒ dangling bonds act as defects that limit the lifetime of the excited charge carriers
- SRH recombination \Rightarrow reduces diffusion length, L
- Due to high defect density, *L* in a-Si:H is only ~100nm (and even 2-3 orders of magnitude lower when *n* or *p*-doped)
- Thus, cannot rely on diffusion for transport of charge carriers in thick a-Si:H absorber
- Therefore, a-Si:H devices are <u>not</u> based on a *p-n* junction like wafer-based c-Si solar cells

15

a-Si:H Solar Cells

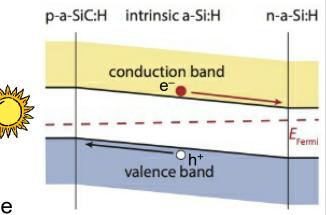
- Instead, a-Si:H cells based on a *p-i-n* junction
 ⇒ thicker intrinsic *i* layer (undoped) sandwiched
 between very thin *p* and *n*-doped layers
- Thicknesses:
 i-layer ~300nm thick, while
 p and *n*-doped layers are
 only ~10 nm thick
- Between highly-doped *p* and *n*-doped layers ⇒ built-in electric field across *i*-layer (absorber) created

• Remember: <u>diffusion length</u>, L_D :

$$L_D = \sqrt{D\tau} = \sqrt{\frac{\mu\tau k_B T}{q}}$$

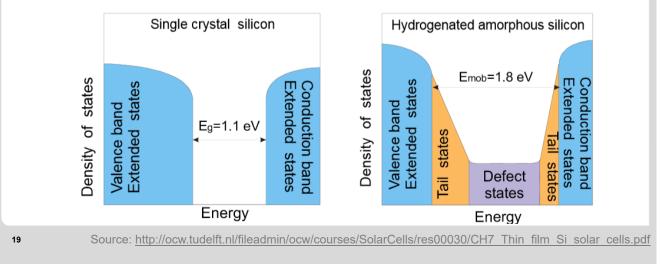
(noting that both lifetime τ and mobilities μ are 50-1000x lower in a-Si:H compared to c-Si)

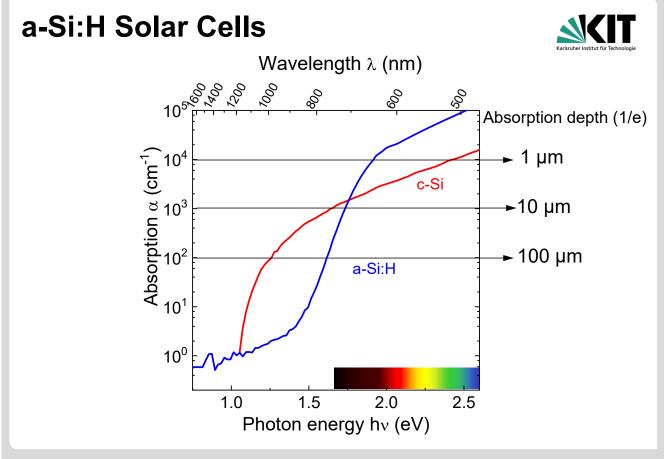
• Instead: <u>drift length</u>, $L_E =$ average distance a carrier can travel with its drift velocity in an electric field *E* before it recombines


$$L_E = \nu_E \tau = \mu \tau \left| \vec{E} \right|$$

= 1µm assuming that we have a voltage drop of 1V over a 1µm absorber thickness (roughly what we have in a-Si:H solar cell), indicating that $|\vec{E}|$ =10⁴ V/cm

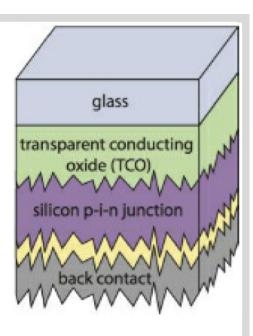
 In such a device, where electronic drift due to electric field is the dominant transport mechanism ⇒ called a <u>drift device</u>


- Electronic band diagram : the slope in the intrinsic film reflects the built-in electric field
- Due to the electric field, photogenerated charge carriers move through the intrinsic layer



- h⁺ move up slope in the valence band towards *p*-type layer,
 e⁻ move down slope in conduction band towards the *n*-layer
- In *p*-layer, the h⁺ are majority charge carriers ⇒ dominant transport mechanism is diffusion (similarly for e⁻ in *n*-layer) ⇒ but due to short diffusion lengths, both *p* and *n*-layers must be very thin

- a-Si:H has <u>direct</u> bandgap ⇒ thus high absorption ~10⁵ cm⁻¹
- But bands are "smeared" due to band tails and defect states
 ⇒ no clear bandgap ⇒ thus often refer to "optical bandgap"
 vs. "electrical bandgap" (i.e. there might be absorption at
 longer λ but is it useful?)


- Cell deposited in superstrate configuration
- Means that light encounters the layers in order that they were deposited in production process
- When we talk about a "p-i-n device", this also indicates the order of depositions
- Glass is typically used as superstrate because it:
 - i) is highly transparent;
 - ii) can handle the conditions during cell deposition;
 - iii) can be supplied pre-coated with a TCO;
 - iv) is cheap; and

21

v) serves as excellent mechanical and environmental protection of the solar cell.

a-Si:H Solar Cells

- Typically, a-Si:H solar cells are not planar devices ⇒ instead are deposited on nanotextured TCO
- Textured TCO scatters incident light \Rightarrow helps increase average pathlength of photons \Rightarrow increase amount of light absorbed without increasing the thickness of absorber layer \Rightarrow higher $J_{sc} \Rightarrow$ higher η (N.B. similar motivation for pyramid texture in c-Si)
- E_g of a-Si:H is ~ 1.75 eV \Rightarrow V_{oc} 's ~1.0V \Rightarrow limited by high levels of SRH recombination
- Only absorbs λ < 700 nm \Rightarrow highest J_{sc} 's achieved in singlejunction a-Si:H device ~ 17–18 mA/cm² at average EQE ~75%

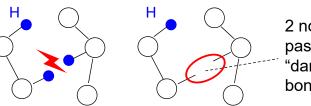
glass

transparent conducting

oxide (TCO)

silicon p-i-n junction

ZnO or SiO_x back reflector


back contact

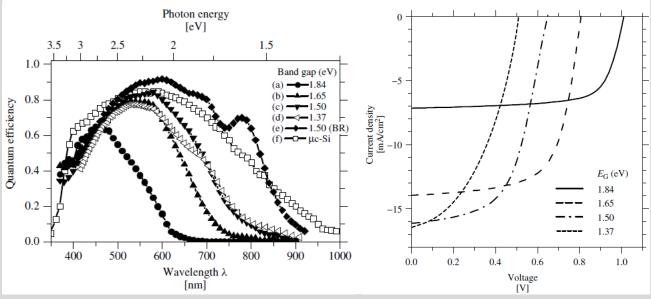
Source: textbook

- Light-induced degradation (Staebler–Wronski effect, SWE)
 ⇒ biggest challenges for a-Si:H thin-film solar cells
- Mechanism: recombination of light-excited charge carriers uses energy to break weaker bonds and creates metastable defects in absorber layer \Rightarrow forms dangling bonds, that lie within the bandgap \Rightarrow increased defect density leads to increased recombination \Rightarrow lower η

2 nonpassivated or "dangling" bonds result

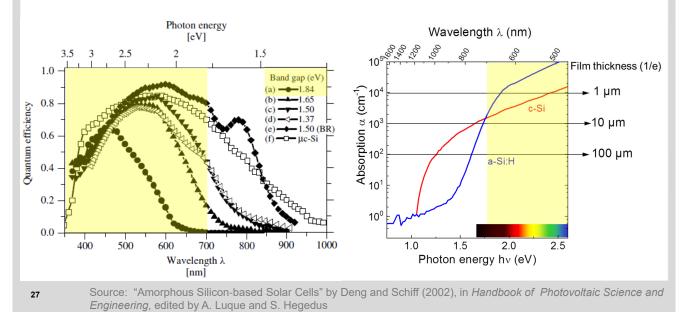
a-Si:H Solar Cells

- SWE: after ~1000 hours of illumination, η stabilizes at 80–85% of initial η value and then remains stable
- Effects can be somewhat 00-00 minimized but never 10 avoided completely Triple-junction Power mW/cm²] • Highest stabilized single Single-junction 5 -junction lab-scale solar cell η = 10.1% (Oerlikon Solar, Switzerland) • a-Si:H modules η 0.01 0.110 100 1000 10000 1 more typically 3 - 4%Light soak time [h]


Bandgap Engineering:

- Alloying of Si with elements, such as Ge and C, can be realised during thin film deposition
- Inclusion of C in a-Si:H increases E_g (~2.0 eV for a-SiC:H)
- Inclusion of Ge in a-Si:H decreases E_g (~1.0eV for a-Ge:H)
- Resulting alloys have wide range of bandgaps

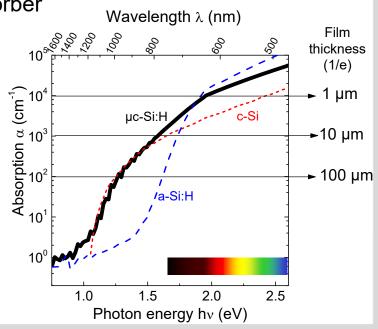
- E.g. a-Si:H (1.84 eV) vs devices made from a-SiGe:H mixtures
- Increased Ge content \Rightarrow lower $E_g \Rightarrow$ longer EQE response \Rightarrow higher currents \Rightarrow lower voltages



25

Source: "Amorphous Silicon-based Solar Cells" by Deng and Schiff (2002), in *Handbook of Photovoltaic Science and Engineering*, edited by A. Luque and S. Hegedus

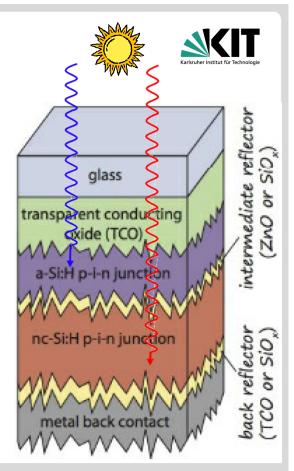
- Reminder: not all absorption is useful
- e.g. optical absorption data of a-Si:H looks like it should respond to 1100nm light, <u>but</u> electrically the solar cell does not respond to light with λ > 700nm



a-Si:H Solar Cells

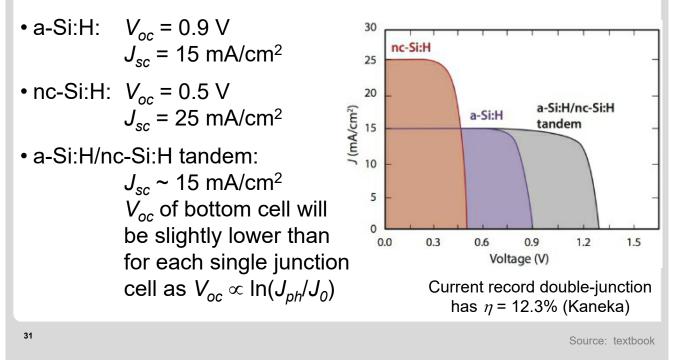
Bandgap Engineering:

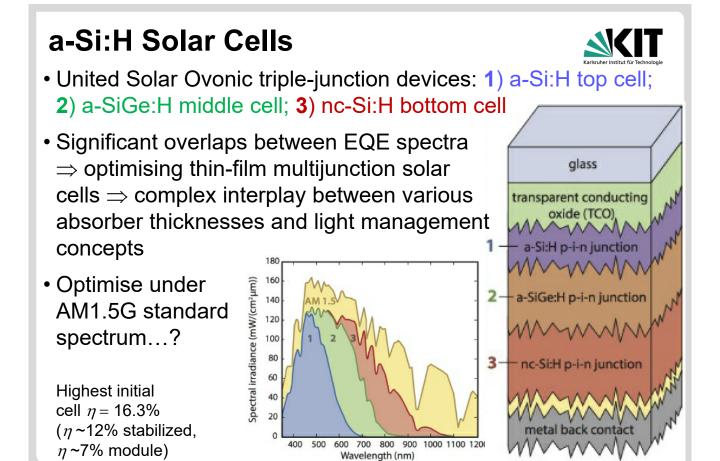
- Also, hydrogenated micro- (μc-Si:H) and nanocrystalline silicon (nc-Si:H) as possible absorber
 Wavelength λ (nm)
- Also suffers less from SWE
- Bandgap similar to c-Si and also indirect
- But to harvest >700nm range (where a-Si:H responds poorly), thicker films (1 – 3 μm) and lighttrapping required

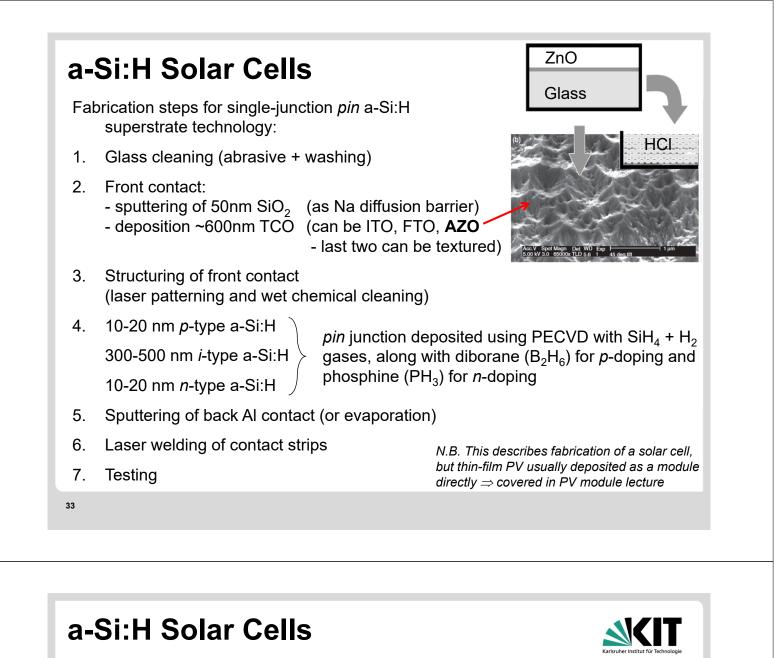


Multijunction (also called tandem) solar cells:

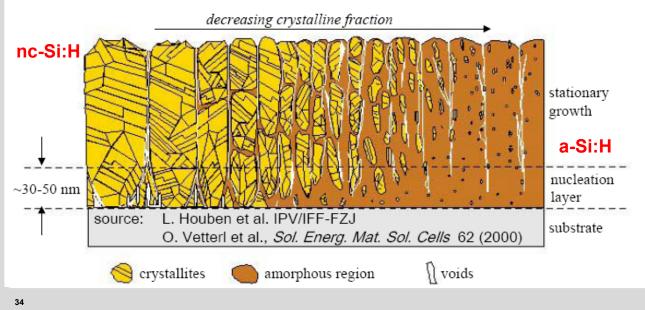
- Multijunction solar cell approach allows for absorbing a wider range of photons ⇒ stack higher bandgap a-Si:H solar cell on top of lower bandgap a-SiGe:H or nc-Si:H
- Solar cell with the highest bandgap is used as a top cell that converts the most energetic photons into electricity, while the lower bandgap material is used for the bottom cell and converts the lower energetic photons
- Add voltages of the two solar cells together
- The current is determined by the minimum current flowing in each device ⇒ thus tandem solar cells require "<u>current</u> <u>matching</u>" (discussed in more detail in tandems lecture)


a-Si:H Solar Cells


- With a-Si:H can have doubleand triple-junction devices
- Common device was "micromorph" solar cell ⇒ with a-Si:H top cell and nc-Si:H bottom cell
- Blue and green short-λ light is absorbed in top cell, generating e⁻-h⁺ pairs, while longer-λ (red and NIR) light is absorbed in bottom cell, also generating e⁻-h⁺ pairs



 Total current density = that of junction with the lowest current density ⇒ optimized multijunction cell ⇒ current densities in each subcell have to be matched



Source: textbook

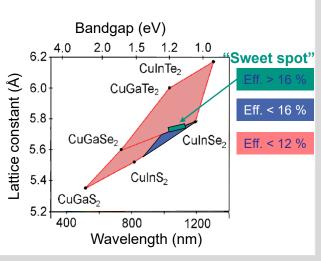
 PECVD used for deposition of both a-Si:H and nc-Si:H – just vary deposition parameters (temperature and H₂ ratio)

influence of deposition parameters: silane concentration, power, frequency, temperature, ...

Thin-Film Crystalline Si Solar Cells

Why not use crystalline silicon for thin-film PV?

- Non-toxic and earth abundant material (unlike In, Cd, Te, etc)
- Doesn't degrade like hydrogenated amorphous silicon (a-Si:H)
- Thin films made of very small-grained material, called microcystalline silicon (μc-Si)
 but no hydrogen
- Still indirect bandgap material ⇒ light absorption challenging
- Complex device processing, high-T processes needed
- Never achieved η > 10% for full-size (~1m²) modules



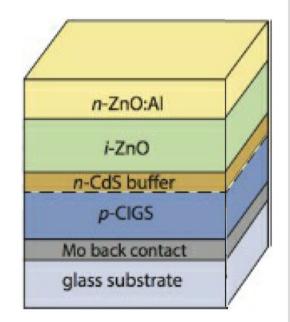
Source: <u>http://www.pressebox.de/pressemitteilung/csg-solar-ag/Dr-Ottmar-Koeder-wird-neues-Vorstandsmitglied-</u> fuer-den-Bereich-Produktion-der-CSG-Solar-AG/boxid/186646

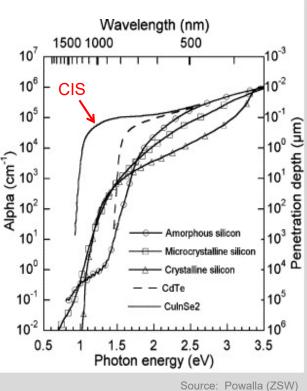
CIGS solar cells

- Chalcogenides include semiconductors containing elements S, Se or Te
 - Copper indium gallium selenide (CIGS)
 - Cadmium telluride (CdTe)
- Change In:Ga ratio x and Se:S ratio $y \Rightarrow$ tune bandgap of CI(G)S from 1.0 – 1.7 eV: Cu(In_x Ga_{1-x})(Se_yS_{1-y})₂

e.g. CulnSe₂ has E_g = 1.0 eV, while CulnS₂ has E_g = 1.5 eV, and CuGaSe₂ has E_g = 1.7 eV

Ag Au

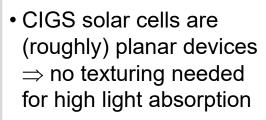

CIGS solar cells

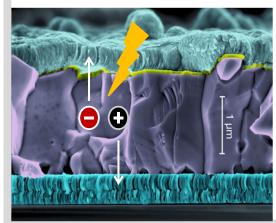

- CIGS is a direct bandgap semiconductor material
- High absorption coefficient over broad wavelength range
- Absorber thickness of 1–2 µm sufficient to absorb a large fraction of above-bandgap light
- Typical diffusion length is about few µm
- CIGS is *p*-type ⇒ resulting from intrinsic defects in material (Cu deficiencies)

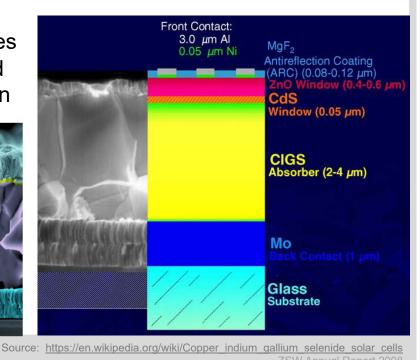
CIGS solar cells

37

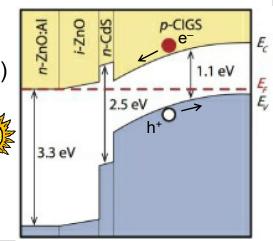
- Typical CIGS solar cell deposited on glass substrate
- Molybdenum (Mo) layer ~500 nm thick deposited as rear contact
- *p*-type CIGS absorber layer deposited (up to 2 μm thick)
- *p-n* junction formed by depositing thin (~50 nm thick) cadmium sulphide (CdS) buffer
- Then intrinsic zinc oxide (*i*-ZnO) layer deposited (role not fully understood), followed by TCO based on Al-doped ZnO



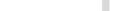



CIGS solar cells

 Grain boundaries largely run vertically through the absorber ⇒ less damaging that horizontal grain boundaries;



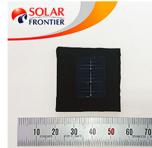
CIGS solar cells



- Light enters cell from left, via the ZnO \Rightarrow high bandgap of $E_g = 3.3$ eV minimizes parasitic absorption losses
- *n*-type CdS buffer layer has $E_q = 2.5 \text{ eV}$
- Commercial *p*-type CIGS absorber layer $E_g = 1.1$ eV, achieved using Cu(In_xGa_{1-x})Se₂ with $x \approx 0.3$
- Bandgaps of *n* and *p*-type materials are different ⇒ CIGS considered as <u>heterojunctions</u> (c.f. Si homojunction)
- Role of sodium (Na)

 ⇒ reduces recombination
 at grain boundaries in CIGS
 (like H⁺ in Si) ⇒ Na-source
 in soda-lime glass (window glass)

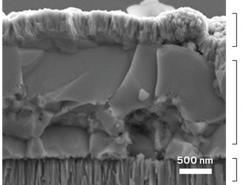
CIGS solar cells


- Fabrication of CIGS solar cells many different approaches:
 - i) <u>co-evaporation</u> under vacuum conditions via crucibles of copper, gallium, indium and selenium onto heated substrate
 - ii) <u>sputtering</u> onto a non-heated substrate, then thermally annealed in presence of selenium vapour
- Variety and complexity of reactions taking place during the 'selenization' process ⇒ CIGS properties difficult to control
 - iii) Non-vacuum techniques based on depositing nanoparticles of the precursor materials onto substrate then sintering the film \Rightarrow plus then followed by selenization step

- **CIGS solar cells**
- CIGS solar cells have achieved one of the highest conversion efficiencies for thin-film PV
- Previous solar cell efficiency record held Centre for Solar Energy and Hydrogen Research (ZSW, Stuttgart) with η = 22.6% for CIGS \Rightarrow working with Manz AG for commercialisation
- Overtaken by Solar Frontier (Japan) with $\eta = 23.3\%$ (1cm² device with $V_{oc} = 734$ mV, $J_{sc} = 39.58$ mA/cm², FF = 80.4%) \Rightarrow notably for a Cd-free CIS device
- Despite the very high η, CIGS technology faces challenges:
 i) complex deposition process; ii) achieving uniform large-area depositions with iii) a high production yield

41

Source: textbook

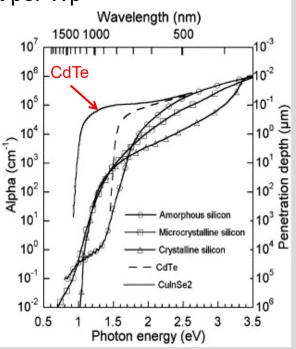


Kesterite solar cells

- Indium is a very rare element, but crucial to CIGS solar cells
 ⇒ scarcity may prevent upscaling of CIGS PV to TW scale
- Also, current thin-film display industry depends on In as well, with ITO is integrated in many display screens.
- Cadmium is toxic but efforts underway to replace Cd with Zn
- Kesterite Cu₂ZnSn(S,Se)₄ is based on abundantly available and non-toxic elements
- Record efficiency was η = 12.6% (IBM, 2013)
- Challenge controlling defects and presence of unwanted phases

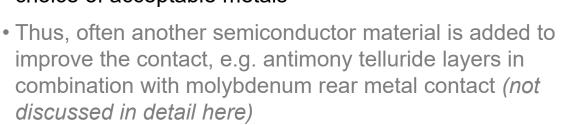
Three layers (top to bottom): Indium tin oxide, nondoped zinc oxide, cadmium sulfide

Copper zinc tin selenide (Cu₂ZnSnSe₄) doped with germanium


Molybdenum substrate

Source: https://cen.acs.org/articles/96/i7/Kesterite-solar-cells-ready-shine.html

CdTe solar cells



- Cadmium telluride (CdTe) PV the thin-film technology with currently lowest demonstrated cost per Wp
- CdTe: *p*-doped semiconductor with E_g = 1.44 eV \Rightarrow close to ideal for single-junction device
- CdTe is a direct bandgap material ⇒ only few µm of CdTe required to absorb all above-bandgap photons
- History: first suggested for PV in 1956, followed by first solar cells being made in the 1960s, with η = 5% devices made in 1972

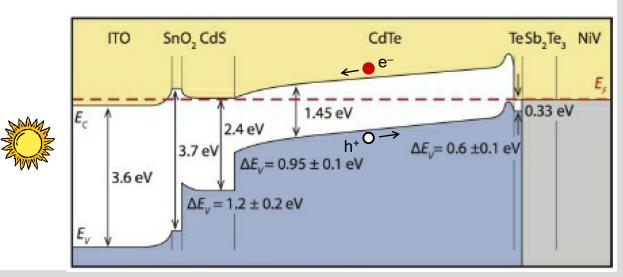
CdTe solar cells

- First, TCO front deposited onto glass superstrate (ITO with tin oxide layer)
- *n*-type layer is CdS (same as for CIGS but thicker)
- Then, *p*-type CdTe absorber layer (few μm thick) is deposited
- Making a good back contact on CdTe is challenging due to limited choice of acceptable metals

CdTe solar cells

Source: textbook

front glass


n-doped SnO,

n-CdS buffer

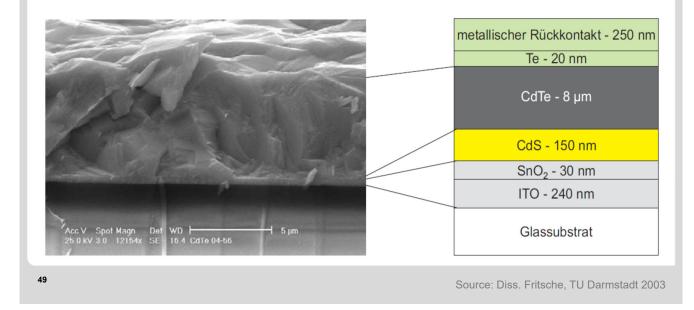
p-CdTe

metal back contact

- CdS/CdTe is a heterojunction (like for CIGS)
- Light-excited minority electrons in the *p*-layer are separated at the heterojunction and collected at the TCO-based front contact. The holes are collected at the back contact.

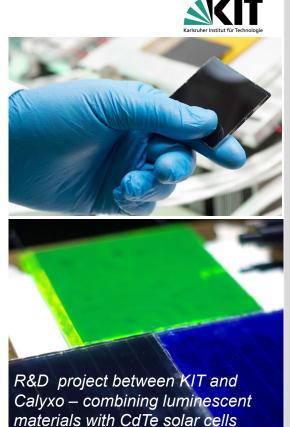
Source: textbook

CdTe solar cells


- CdS/CdTe layers are processed using the closed-space sublimation (CSS) method
- Sublimation = transition of substance directly from solid to gas phase, without passing through intermediate liquid phase
- Source consists of granules/powders of CdTe
- Source material and substrate are placed close together (mm – cm) under vacuum conditions
- Both source and substrate are heated ⇒ source is at higher temperature than substrate ⇒ temperature difference is the driving force for thin film deposition on substrate
- · Glass limits temperatures that can be used

7			Source: textbook
CdTe sola			Kartsruher Institut für Technologie
At least eight	different ways of Vapor transport deposition Carrier gas $(10-100 \text{ Torr})$ CdTe 700°C 700°C $d = 1-10 \mu\text{m} @ 0.1-1 \mu\text{m/min}$	Electrodepositing CdTe $ \begin{array}{c} Electrodeposition \\ $	Metal organic chemical vapor deposition Source gases (1 atm) $200-400^{\circ}\text{C}$ $(\overline{0000})$ $d = 1-4 \mu\text{m} @ 0.01-0.1 \mu\text{m/min}$
Physical vapor deposition (10^{-6} Torr) 400°C Cd + Te ₂ vapor Folid CdTe $1-5 \mu m @ 0.01-0.5 \mu m/min$	Sputter deposition (10^{-4} Torr) (2000) 200°C $\uparrow + + + + +$ CdTe target $d = 1-4 \ \mu\text{m} @ ~0.1 \ \mu\text{m}/\text{min}$	Spray deposition $CdCl_2 + Te$ (1 atm) \downarrow \downarrow f f f f f f f f	Screen print deposition (1 atm) CdTe slurry Screen $\sim 25^{\circ}C$ $d = 5-30 \mu m$

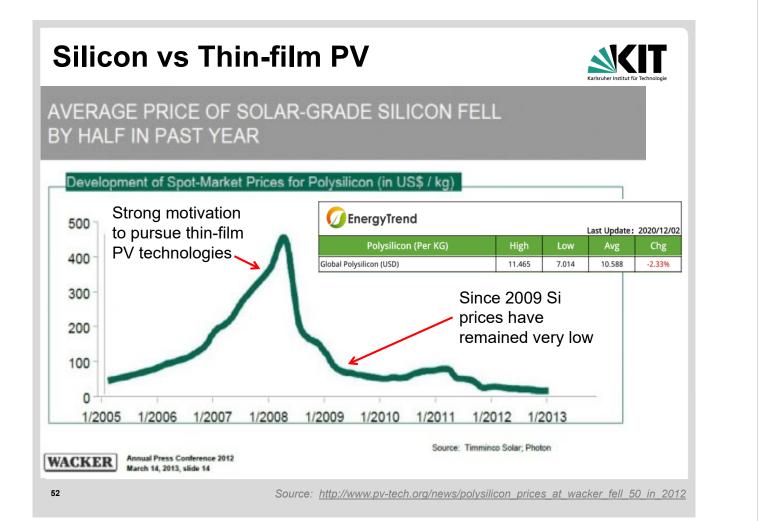
CdTe Solar Cells



- Cross-sectional image via scanning electron microscopy (SEM) of device from Antec Solar (Germany)
- Note, very rough surfaces

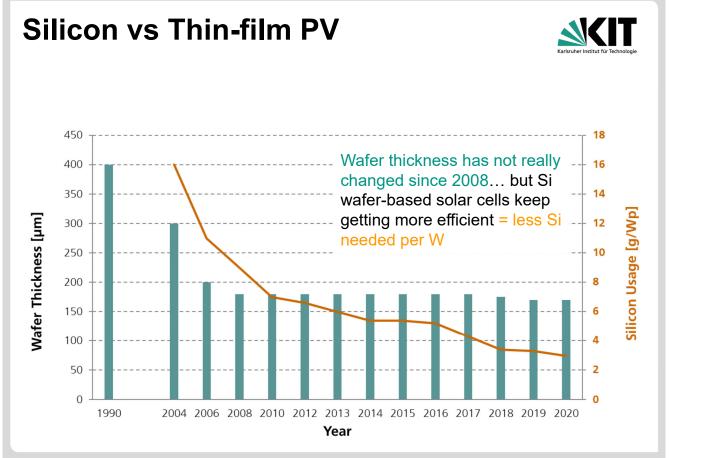
CdTe Solar Cells

- First Solar (USA) leading CdTe PV module producer and current world record solar cell efficiency
- η = 22.1% for 0.5 cm² device with V_{oc} = 887 mV, J_{sc} = 31.69 mA/cm², FF = 78.5%
- Three German CdTe PV producers ("second solars"):
 - Antec Solar
 - Calyxo
 - CTF-Solar (German R&D, manufactured in China)

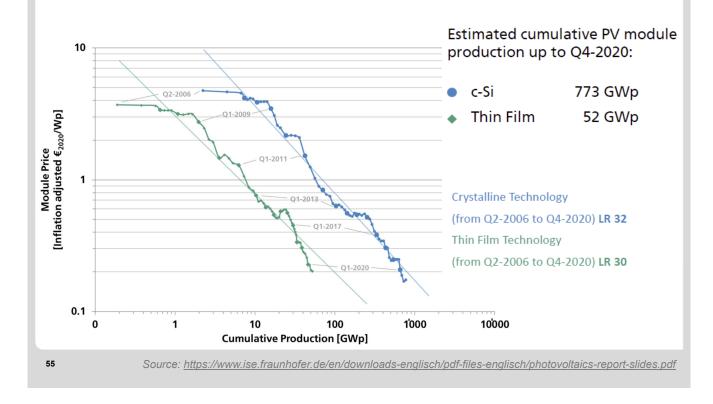


CdTe Solar Cells

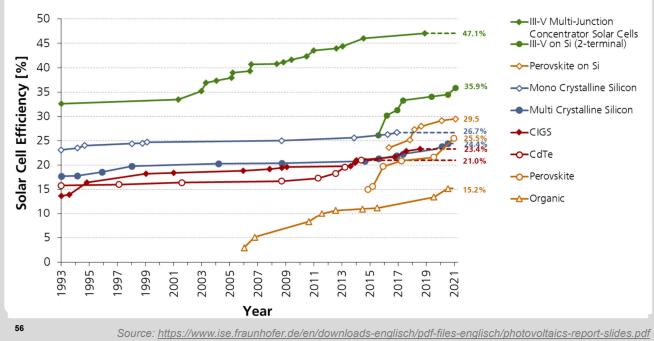
- Although Cd is toxic, insoluble compounds like CdTe and CdS are much less toxic than elementary Cd
- Still very important to prevent Cd from entering into ecosystem
- First Solar producing ~5.6 GWp/year
 ⇒ ~5% of total Cd consumption
- Recycling schemes established have been set up for installed CdTe solar modules ⇒ fund where \$0.05/Wp of purchase price set aside to cover cost of recycling at end-of-module lifetime
- Another challenge is supply of Te ⇒ one of rarest elements (abundance similar to Pt)
- Also Te not used for many other applications, hence dedicated Te mining not explored (currently by-product of Cu mining – 1000 tonnes Cu ⇒ 1kg of Te)


⁵¹ Sources: https://www.greentechmedia.com/articles/read/first-solar-hits-record-22-1-conversion-efficiency-for-cdte-solar-cell Ross *et al.*, Solar Energy Materials and Solar Cells 103 (2012): 11-16.

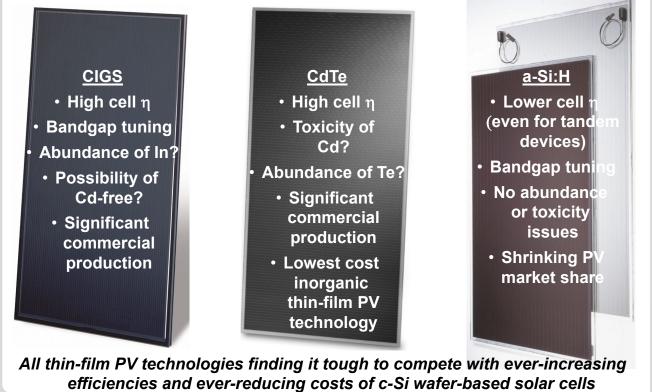
Silicon vs Thin-film PV


- Huge demand for PV in mid-2000's ⇒ over-demand & undersupply of Si ⇒ Si prices sky-rocketed ⇒ two responses:
 - 1) huge investment in thin-film PV technologies to move away from wafer-based Si;
 - 2) but at same time, massive plants for poly-Si manufacturing were being built
- Global recession started in 2008 ⇒ investors have no money ⇒ massively reduced demand ⇒ made worse by massive over supply of poly-Si ⇒ bottom dropped out of wafer-based silicon solar market ⇒ Si PV manufacturers forced to cut costs to stay in business and take loans from government (e.g. China) ⇒ many EU Si PV companies go bankrupt ⇒ thin-film PV technologies largely still developing and cannot compete ⇒ many go bankrupt between 2010 – 2012

Silicon vs Thin-film PV


• Learning rate (LR) for thin-film PV slower than for c-Si PV

Silicon vs Thin-film PV



- c-Si and mc-Si solar cell efficiencies hardly increasing (approaching $\eta \sim 30\%$ theoretical efficiency limit) CdTe and CIGS also no recent progress
- Most rapidly increasing efficiency is for perovskite solar cells (and tandems of perovskite on Si)

Comparing Thin Film PV Modules

57 Photo: Manz

Photo: First Solar

Photo: Schott Solar

Thin-Film PV Summary

- Range of materials can be used for thin-film solar cells:
 - i) a-Si:H (incl. a-Si:H/nc-Si:H tandems) and thin-film c-Si
 - ii) CIGS
 - iii) CdTe
- Main goal was to move away from energy intensive process of making c-Si, but ultimately thin-film struggles on cost
- a-Si and thin-film Si never achieved $\eta > 10-11\%$ large-area \Rightarrow cannot ignore "balance-of-systems" (BoS) costs
- CIGS and CdTe exhibit higher efficiencies but issues with abundance and toxicity remain ⇒ compatible with TW-scale?
- c-Si fabrication processes are simple and robust ⇒ plus c-Si also very stable ⇒ hard for a new technology to beat
- Thin-film PV market not growing ⇒ main hope lies in the perovskites (and their tandems with c-Si)?

Homework: a-Si:H solar cells

- What role does H play in a-Si:H?
- Why is it necessary to make a *pin*-junction out of a-Si:H material? (or why won't a *pn*-junction made from a-Si:H work very well?)
- How does the Stäbler-Wronski Effect (SWE) affect the performance of a-Si:H-based devices?
- Describe one way of introducing light-trapping into a a-Si:H solar cell.
- With two elements can Si be alloyed to tune the bandgap of a-Si:H solar cells up and down?
- What is the critical issue to consider when fabricating a tandem/multijunction solar cell? State why.

Homework: a-Si:H solar cells

Reading Chapter 13 textbook